

BAYONNS
REPORS on pmoposyd twamRCEPRINO

8xtatan Sewor Syntam.

Bayome is now sarved by a syatem of combined sewars,
 or the oagt and woath, and into lewayk Bayon the weat. A1工 5low 1. by Eravithy whth the exception of ono pumping atation on sve. F near 30th st. which boostis the 120 w from a anall 10 w andi. ODjoct1vo of Propased vorics

To moot the requi mements of the stabe Departmont of Heslth and the Interatate Sandtation Comulsalon, sowage atachargod to tho matern adjacont to tho e1ty must be treated. The dogree of treatment neceasary ia not as hi gh at wruld be noodod on an inlend stroan, and sedimentation only 1 s aufficient to meet the regulwenent. This vill semove the greater pert of the settlenble selita end thua reduee the cxygen demand of the aewage and also provent the formetion of aludge banks in the receiving waters. This depoattion of shuage on tho botton has much to do Fith the cepletion of cxygen froin the waters of the haybor.

Location of 2reatriont plant
tuoh atudy was given by city offlcials and their engineers to the selection of a to for the sewage troatment plant and the final locetion is ideally situated for the sewace treatment plant and the final location is ideally altuatod for the purpose. It is oast of Ingram Ave:, south of Oak. St., and adjacent to the K111 Van Kull where the rapid current will provide oxcellent allution of the effluent. Lsma is included for a dock so aluage say be barged to sea if desirable, or trensported by water to fertilizer plants. The plant site is in an industrial area adjacent to o11 plants. This makes avallable a source of power in oll and refinery gas. The alte is al so favorably located with regard to collecting the aewago as it is in the approximato conter of the syatou.

Intercepting Sowora
The intercepting sewers are planned to inter* copt all of the dry weather flow and a considerable portion of the atorra water munoff. The northeatteriy inm tercopting sewer starts at the Juason Boulevard and the old Mownis Canal and runs alone the old cenal adjacont to the Bayonne and Jersey CIty Line. This will intercept the flow from in area in Bayome that now aischarges into Newaric Bay at 59th Straet and will al so serve a portion of Jersey City that is tributary to the old canal. Where
the canal intersects the latlonal Docks Rallway it tarma to the south and runs slong tho rasiway property to slat Street where it continues on sve. F to 19th St. where it truverges privato and eity property to the plant. Thta Ine intorcepts all existing sewors north of the plant that now as scharge znto Ilow Youtc Bay amd tho Kell Vam Kull. Intercepting Chambers for Bayonne are located at 59th St. and Futson B1vi., 50th Street, 34 th street, Soth Street and 15th Street. Provision is also reate for the adition of 2.5 med of santtary sewage from the Mavy Base noer 38 md St, to provide for future developmont of the Base that will not be served by the existing Mavy Treatiment Plent. Capacity 15 n also provided for the how fron the westerly area which will be collected by an intercopting sewer along Newarit Bay that will intercopt the mewort now dawharging into the Bay and carry the intercopted flow to a Puaping Station Locsted at 25th Street near the Bay. The foree nain will connect mith the eastorly intercopting tewer at 2Ent street. The south-easterly intercepting sewer will. start at South Ave. and Sth Stroet and mun down South Street to 1 st Ave. which $1 t$ will follow ns far as loxington Ave. It will go up lexington Ave. Iron First Ave. 60 Zest ind Streot and thance along Eage End Stroet and a contimuation chereof past Ingram Ave.when it goes through pmivate property to the Treatrant Plent. This IIne will pick up existing aewerg at Feat sth st. and north of
west 3xi St. that Aischarge into Nowaric Bay, and sewers on Ave. C, Ave. D anc Ingraut Ave, that dsacharge into the Rill Van
 betwoen the Boulovawd and Avo. © is plamned for Inmedsate construction as the paving of thin street is desired by the \%avy.

Basis of Design of Intorcopting Soverg.

There is no standard practice for the design of aewers to intercept the flow fron combined sewers. This is no coubt bacause the number of combined sewar systems in this countiry ia mmal compared to separato systoms. It k s sometimes entd thet the itrat fluah whould be taken in the interceptor. It is imposaible to Ruask al. of the symten at the hydrographs to Iollow inatente. To completely flush the sewers will require a time sufficiont for sewace frou tho furthest point to reach the intercaptor. $\mathrm{m}_{\mathrm{h}} \mathrm{it}$ timo corresponds apprortinntely to the tine of concentration at which the maxtmun flow w111 occur. Obvioualy this maxinum flow cannot be takon, so a comple te flushing is not possible. Many assumptions for the anount of storm flow are arbitrary and omplrical. Some municipalities provide only for the meximur dry woather flow, others use cartain ratea per caplta, s.s 500 eallons, which provide for some increase over the dry weather flow. In Tolede, malLowance of mun-off of malna not in axoess of .02 imohes per hour of rain was made.

As the prirpose of the intorcepting swerg and treatimant plant 15 to roluce the mount of orgnnio mitter reaching the recelving watexs, a study was made to detowatne the baat size of interoopting sewows and troatment unite to accompliah this and and to estimato the mount of organte mattor that would pats out thwough overflows in the intercogting chambers comparod to that In the plant offluent. There is a general misconeaption that a fremondous organic lond is bypassed in combinod aystona with intarcepting aoworg. For axanple, Dre Thioff, whon ho visitod this cauntry mhowty after the firgt Forld War, womariced that it seemod. ail2y for one of tho 2argo framion cithes to provite oomplate troatment by activatod siudge when raw sowage wes disehnerged ditreethy from combined sewer overilows. Our studies show that the amount of sovace frou over2low is surpwisingly mal2.
mo obtain a ploture of actual conditlons during runoff, stualea were made of the flows during typias storis. Fig. 1 thows mainfall evevos for varlous froguanciea in the viesntty of Mew Yoric. The 2 to 100 year curves were cerived from data in IT. 3 . Dep't. of Acricultury Maseellmeous publication Mo. 804. Wrainfall Intensity Irequency Datan by David Io Yamall. The cusvos for groatar ixoguoncy wore obtained frou a prob6billty study of rainfall intensity froqueney, corralabed whith the mwiber and curmtion of atomes 3n the het-

䯈													
＋													
							1 H						
電					大w				20		，	．	
					，								
											23	T	
					20		3				4	\cdots	
	楧						3	\％			哣		

5isy
（2）
$)^{4}{ }^{2}$ ＂－

耻

± 0 dVW
dヨMヨS SNILdコDCJLNI
r•N＇ヨNNOAVE
 yoopa of flouna sof safnurW us

人N＇L XN＇LS HכanHつ OE aココNISNコ SNIATRSNOD s110ه $\exists \square \wedge 7 ?$
Kq＋roday Kuodmosor O_{1}

ropolltan area of New Yoxk. The 0.3. Woather Burean in New York give the average nuwber of daya when the preeipItation was 0.01 inch or more as 2.26 in one year. A study of the wainfell records from 1914 through 1942 show that the rainfell exceeded 0.1 Inch on 74.24 days.

To obtain a hylrograph of the flow from ench area, iaochrons or linea indsenting the time regutred water to rench the intercepting cluwhers wore plotted on the map. Fig. 2 shows such a map for the 34th St. area. The aress within these isochrons were planinetered and tabulated. A soparate computation was made for esch of several frequencias, incluaing $1,2,4,3,26,32$ and 64 a torms a yoar. In the tabulations, the rofnfall intensity or "I" was taken for each tine in minutes. Six ainutea was allowed for time to reach the inlets. The rainfall intenalitles were then multiplied by 0.6 , the assumted munoff coefficiont "C" to egve "C.I." The areas planimetered froin the isochrons were tabulated in ine with thelr correaponding timos axi multiplied by ${ }^{\text {"C.IN }}$. The results give the flow for each minute. The fom of the graphe is shown in Fig. 3 Indicating the maan valuos for several areas computed as describod. For oach freçuancy of atom, the flows at each interoepting chanber were plottod, apaaing the hydrographe to ellow for the thine of flow in the intorcepting sower botween intorcopting chnimers. P1g. \& show such a ploteting for 3 atowas a yoar. At each chamber a horizontal line is drawn indieating

- 7 -

the anount of flow that elll be carried in the intercepting sewer, which is approximately the capacity of the sower. The area above this line inaleates the anount of overflow und the area below the 11ne, the low that w111 pasa down the sower to the next chamber. By adaing the flows from the upstroan sectiona to the slow at any point, tho total flow is obtained. Thes graphs also indicate the duretion of ovorflow at each chember. Prom thoso Aata the percentace of semage that is divertod may be calculated. The charts also indicate the best sizo of intoreeping sewer; that will allow a mintuw overflow mfthout exceative sizes.

The dasign flow choson was 1,000 gpd per capita. This is the total maximue Plow thet will be Intarcepted during storns and ineludes the nownal sanitary flow and infiltration. From a amitary standpoint the exect emount of inflitration has 11ttle significance provided the sewers have adequate capacity to include it, ns infiltration eerries mo pollution. It does use up a portion of the sewer capacity and thus reduces the reserve capacity provided for storm weter. For old acwor systems as in Bayonne, the best estimate of inci2tration is on an area basis. A value of 2,000 gallons per acre is considered a fair value for infiltretion.

Dyy Weather H1.0w.

the Aprill 1988 report of the Fational
Board of F1re Inciemmitara Elve the water consumption in 1936 es $9,494,000$ gallons per day, or a per capita con-
sumption of 99 gallons per capita. They also state that about 60% of the consumption is used for manufacturing. This gives a domestic consuaption of anly 40 gallons per capita. The variation in consumption is largely êue to an increase in industrial usage. For example in 1944 the water consuqption averaged loss tham 13 mgd with a maximum month of 23.3 mgd. The domestic sales were 28% and factory sales 78%. 28% of 13 mgd is 3.64 nged or for an estimated popalation of 9,000 the domostic per capita conswrytion was 40 gallons.

The following table lists the average water consumption of the larger consumerg for the period of oct. 1, 1944 to Sept. $30,1945$.

Consumar
Araerion Radiator Co.
Best Foods Co.
General Cable Co.
Pharma Cherical Co.
Solar urg. Co.
Standard ofl Co.
Texas 011 CO .
Fide Water 0.2 CO.
W.S. Heval Supply Dept.

Averare Consumption.
213,200
147,500
161,700
125,500
222,700
2,018,500
146,200
1,712,600
$\frac{847,800}{5,485,700}$

This List includes $347,300 \mathrm{gpd}$ from the Naval Supply Depot wich has a treatraent plant so this flow will not go to the proposed sewer. Mueh of the water used by
the large consuners is for cooling purposes and stoen goneration and will not be ineluded in the flow to the sewors. The quantity of wator used by industry waries with business conditions and wes high curing the past war period. For nomal or average conditions it is eatimated thet the per eapita flow will be made up as follows:

Domatsic Scwage. Industrial laste to sewor Infilitration
3.

40 grallons par cepitua.

50	"	"	
20	n	"	n

110 gallons par cap1ta per day*

The inflltration is basad on 2,000 gallona
per acre.
The allowance for Industrial waste ie be1.eved adogunta for tho averago qumbtity that will reach the plent. The maretn of Rlow provided between bhe dry wenther capacity and the storm flow capanotty in the ine tercepting sowew ha maple to care for any fluetrations of santtary and Xndutitrint I2ows.

Quantity of Overillon:

P1E. 4 shows a typlcal plotting of the storm flow for the northeasterly intercepting sower. The hydrographa reprosent tho muofis at the wartous chambers for a stom that would be expected 3 tines a year. sirilar studien were made for frequancies of $1,2,4,36,32$ and 64 storxat a yoar. To overflow occurs with a 64 a year stoma. Fron thene plottinge the time of overflow in obtained at
ench chamber. The totel time for any aroa is computed from the sum of the time for each froquency times the number of occurrences per year. The time of overflow expreased in pereent of a joar multiplied by the yearly senttary flow gives the anmal guantity of sanitary sewace that will overflow at times of stoma. mise guantity Is conservative an it assumea nill of the sant tary, aewage will overflow. Aotually wuch will go to the intercepting sewer, includjng all of the hoavier solids that are carried along the bottom of the sewor. Dreping a considerable part of the overflow period, the total flow does not greatly excoed the capacsty of the interceptors, so most of the sanitery 12 ow will be intercopted. Disregarding this refinement, and assuming that no sanitary sewage rasches the intercepting sawer when storn water is ovorflowing, the percontace of asnitary sewage that would not be treatod computed for the nor theasterly interceptor for a year is only 0.4%. As this interceptor servas a large portion of this eity, this value is conaldored typical and ropresentative of the total.

Intercepting Chambera

Intercepting Chumberw are provided where the intarcopting sewer intersacta existing sewers. The design of each chanber is adaptod to the conditions at each locktion such as sigos and relative elevations and aitgrent of existing and proposed sewers. In operation, all of the chembers ape sinilar and function as follows:

1. The ary weether flow passes directly to the intercopting sewer. There are no woirs or obstructions and the invert slopas from the existing to the intercepting sewer so all transported sollds will be intercoptod. 2. A motor-operated mimatically controlled aluice gate is providod botween the existing and intercepting sewers. This 1 a controlled by a 1 llost in the intarceptor and will allow flow to pass until. the flow in the interceptor reaches a predetoradnod depth. The gate whll then close enough to throttle the flow so the deairod $\Omega 20 w$ in the intorcepting sewer is maintained. The flow into the intercepting sewer is never completely stopped but contimues throughout the atorm. This feature is considered important in keeping the anount of oxymice matter that is by-passed to a minimyn.
2. Provision is made for the overniow of excess atom water by means of welrs or channels as shown on plans. Overflow devices are planned so that there will be no apprectate backing up of the existing sewer when it is at full capacity.
3. The exlating sewer down-atrean of the intercepting chamber will be used for overflow only. Where the sewer is low enough to be arfocted by high tides, tide gates are provided to prevent access of tile water into the Int eroeptorm :

The application of the basic functions of the intercepting chambers to different local conditions is
bhovm on typical coalgns. At 50th Stroet, a 43 inch combined semer 1a Interoepted by a 48 Inch mever. In this case the two semern are practieally at the mane elevation. In tho chambor, it channel with side moirs diverts the flow to the moter-oporeted alulee gate and to the intercopting sower. Stox mater ovorflows tho welvs and passes unier the intercopting sower through tide gates to ticuewtor.

At Sdth St., two 46 inch pipes are interm capted and the flow drops $2 n t 0$ a channel which is conneeted by slutice gnte to the interreepter. Stern weter overrilowe the bonch.

At SOth St.s the axlsting sewer and ixtercepting sewer are parallel vith ilows in oppoalto directicne. A sump provitlod in the axintine sower is commetod te the Intorcoptow whith in lowor than tho oxisting 11ne.

A sivilar plan but of difforant arrangemont is usod at the Ierge chanber whome the BA inch atwer Irom Ave. I and 25th Stareet is intercepted. Nere the 21nes crow with the intereapting \#ower bolow the ex1sting 2ino.

Sevage Treatmont worvie
The plant is designed to serve the whole e1ty. The entimatod popriation in 1902 is 210,000 as ahom on F1E. B. P1G. 6 thow the pogniation par ncre.

Both curves indicate that the rate of growth i.s decreasing, and a great ineresse in popalation is not to be expeoted.

The eatinated per eapita dry weathor flow is 310 gallons, inoluding infiliration anil trade warte. The maximum rate of flow is eatimated as 50% greator than the average, giving 165 gallons per osplta per day. Adding 10\% for the additional anount to be taken furing atorns nukes the flow for dosign capacities 181.5 gellons per eapita por day. With this per capita flow and a population of 110,000 a totel flow of $29,965,000$ gellons por day results. An allowance of 1.5 mged is made in the sewer for future dovelopsent of the Navy base. As this is a future development it in not ineluded in the design flow for prosont plant construction. The plant dosign capmedty is 20 yed and sedimentation traks are deaigned wh the retention period of 4 hours for 20 mgd.

The total capacity of the intercepting sowers ontering the plant is 100 mgd. To maintain a free flow in the sewers, pung capacity is planned for this maximan rate. Rather than discharge flows in exeass of 20 mgd aimeotly to tidewater without troatirent it in constdered that much better overall renoval of organic ghatter will result from pasing the total flaw through the plent. The rate will be $200 / 20$ or 5 times the normal design rate, giving a periof of detention of $4 / 5$ houm or 48 mimutes. With this period togother with tho
large surface area providod in the sediraentation tanks, good romoval of susponded matter will be obteinod. min hydraulies of tho plent dasion provide for handling the maximun stowit flows of 100 mged. The sequence of troatmentr provided is as follows:

Tack with 5 inch olear openinga.
Orit clumber of apiral flow type with alw used

S6" Conninutor or equivalont with capaci.ty of 20 xgd.

Wechanically cleanod bar scroen with L亲 Inch clear oponings for iloms in excess of 20 met.

Suetion well.
Comtrifugnl prapg - vextical type with ancle goars and Diosel axd gas angine drives. 6 units with capaclties as follows:

$$
\begin{aligned}
& 2810 \mathrm{med} \\
& 2540 \text { agd }
\end{aligned}
$$

Flow varlation will be obtained by speed var-
1ation.
Punys discharge to $9^{\prime} \times 9$ condult with sir agitation to provant godtmontation.

Raw sewage condult supplies the 8 unita of sodinontation tanics, M1ow will bo asvided in ogual porm tions to tho unita uned by zomal of synchrontzod motoro oporated sluice gates. The ge gates will be automatheally oponod or closod as rogut red to matutasm a oonatant j.oss of

- 25 -

head of about 0, I foot between the oonduit and tankes. Jach of the 3 sodimentation tanks will be $30^{\prime \prime} 6^{5}$ wias, $262^{\prime} 6^{\prime \prime}$ long with 122^{\prime} wator dopth. Tantre will be nechanfoally elamed by aludge and acun removal apparatus. Tha collooted raw sluage will be raised to two slufge concentration tanka by preunstio ojectore. The two cencentration tanles will be usod altarnately so froah siudge may be puxped inte one tank while slutge is concentrating in the other. The aupernatiant ifquor frou these tavics will be rekurned to the raw aswace and the concontrated sludge treansferred to the aluage at gestion tanks.

Whore will be 8 untta of sludge digention tanles whth total crpactity of 3 cuble foet per cepthe, and provialion for hoating, oud gas collaction. Vacuax filtars are included for dewetoring disosted sluden. The eocnortes of further drying of the sludgs awk is being struliod. The stuace caice from vacum filkera may be used for soll drasang os fortilizor base. With the dock facki土tion included in the plant site, the $A v i n d$ sludge may be tronsported by mater to other tham local marleats.

The final effluent from the sedimentation tenks will bo diachargod to the rill van Kull at the pler hoed 1ino. This point of discharge is foverable in providing good watar dapth end strong tidel exryonts rosulting in good aslution and dispowation of the erriuant.

[^0]
SUPPLFMRNTAFY REPORT

on

PROPOSED ITMERGEPTING SEWERS AND SEWAOR TREATMEITH PLAATI

for

BAYOHHE, \mathbb{E}. J.

Change of Route - Southoesteriy Intercepting Sewer.

Plans submitted Pebruery 21st shored the southeastorm Iy intercepting aewar on kast nod Street and a continuation thereof munaing pasti Ingram Avenue and thence on privete proporty to the Treatment Plant, Since that tiae, bhis property has beon scla and is beling so developod as to make the forner line impractical. A new route has been surveyed and plennod, and it shown on Shoets 1 and 2 of profiles of the southoasterly section, prints of which are being semt under separate cover.

Dxy Waathor Flow for Plant Capacity.
In previous report the dry weather $120 w$ was estimated. at 110 gallons per eapita. To check this value gagings were made on throe of the semer districts:
sast soth street Bast 34th Street Ingmara Avonue

These distriats are larger and are representative of the city. Mhe flows wore obtained by obsorving the depths and velocities in the sewers. Puffed rice was used ns a float material and, times wero recorded by stop watch. A tabulation of observations and computations is enciosed.

BAYOMME, 䍝. J.

Sowor Gagtnga

SUMDARY

Distmet	8 Yax. :Observed : FLaw	8	Area Acros	!	Popu= 2ation	:Popuslation spor Acre		:	$\begin{aligned} & \text { Mow } \\ & \text { per } \\ & \text { Aere } \end{aligned}$		$\begin{gathered} \text { Elow } \\ \text { per } \\ \text { Capitg } \end{gathered}$
50th Streat	762,000	:	180		8,050	!	44.7	:	4.233	:	94.7
	!	:						:			
34th Street	:1, 105,000	:	221	:	12,375		56	:	5,000	:	89.3
Ingrion A	388,000	:	230	:	6,790		29.5	!	1,687		57.1
	\%										
Totals and	:										
Averages	:2,255,000	:	631	:	27.215		43.1	:	3,574	,	82.9

-2-

To obtain the flow per capita, the housea were counted from en eeroplane map. ${ }^{\text {ene }}$ attached sumary lists the meximur flow observed in each alstrict with the tributary area and population. The par capita flows range from 57.1 for the Ingran Avenue district to ges.7 for the 50th Stweet district and averago 32.9 for the three diatricts. As the gagings were taken at thmes when maximum flows would be expected, tho values should be closer to the maxlamm rate than to the average daily flows. The usual value of 100 gallors per capita per day for the dry weather flow is in excess of tho measured flows and should be a conservative figure as a bagis for plent destgn.

旔th the customary allowance for maximina rate of flow and stom water flow, the per capita flow for plant design 1a:

$$
\begin{aligned}
& \begin{array}{l}
\text { Dry weather flow }=100 \text { gals. per capita } \\
\text { Maxinum rate }(250,5)=150 \text { n }
\end{array} \\
& \text { Plus } 10 \% \text { storm water }=15 \text { औ } \quad \text { n } \\
& \text { Total } 165 \text { gals. por caplta }
\end{aligned}
$$

In previous report, a design ilow of 281.5 gallons per capita whs obtained if rom the entimated average dry weather flow of 120 gallons per capita, by the same procoturo.

For the estimeted future population of 110,000 , the per caplta mate of 165 gallons gives a desien capacity of $18,150,000$ gellons per day, for the whole 01ty.

Sower Design Data.

The enclosed"tables show the locations of intercepting chambers, the tributary sxeas, the amount of flow to bo intercepted, and the sizes, crades and capncities of the Intereepting sewers for the northeastorly and southeasteriy section.

Contribution irom jersey City.
On plen proviousiy submitted, the intorcepting semer was show continued northerly along the canal. Irom 59th Street to the Hudson Boulevard. Mhis was plamed to serve a portion of Jorsey oity, which tocether with the area in Jersey city along the canal could drain to the Bayonne intarceptor. As noted in the table, cupacity is provided In the intercepting sewer for the aroa in Jersey city triturtary to it. It is possible that Jersey city may desire to include part or all of this area in its own syston, so tho branch is not show on plans and pfoflles (print enclosed). It seems wise, howover, to znclude capacity for this possible contribution.

BAYONHE, M. J.

Pable showing Contribution to Intercapting Sewors
H. E. INTKARCEPYITO SBUER

Station: Contribution		$\begin{aligned} & \text { TMribu-:Flow : } \\ & \text { t tary :Inter- } \\ & \text { : Area seopted:Total } \end{aligned}$						Intercepting Sewer										
		:		-	1	apacity												
			Acres	:	miga.		Flow		S.18e		Grgao:	mga.						
Statoa: Conurnoutios								,		:	.	:		8		\%	:	
$159+47$:59th \% Truaton	:		\%		:		:		:	:							
	: Boulevard	;	100	:	5.0	:	5.0	:		\%	1							
	:	:		:		:		:	$36^{* \prime}$:	0.06:	20.5						
	:	!		:		:		:		:	:							
	\% Canal Area	:		:		:		:		:	:							
	: Jersey City	:	156	\%	7.3	:	22.8	:		:	8							
	!	:		:		:		\%	42	:	0.065:	26.5						
$118+55$:50th Street	:	180	:	9.0	:	21.8	:		:	:							
	:	:		:		:		:	48^{11}	:	0.065:	23						
$76+73$:34th Street	:	221	\%	21.05		32.35			:	:							
	:	:		:		-			$54^{\prime \prime}$:	0.066:	33						
$73+30$:INavy Base	:	---	!	1.5	:	34.35			:	:							
	:	:		'		:		:	60^{60}	:	0.05	38						
$59+49$	3 30th Strreet	\&	40	:	2.0	:	36.35			:	:							
	:	:		:		:		:	$60^{\prime \prime}$		0.05\%:	38						
$38+63$	3 :Main from West	:		:		:		:		:	2							
	f2End St-lioree	\%	345	:	17.25		53.60			,	:							
		8		\%		;			$72^{\text {B }}$:	0.04\%:	55						
$9+26$:0n 54 ${ }^{\text {17 }}$ Irom	:		2		8		!		:	:							
	: 15th Street	:	239	:	14.45		68.05			,								
	:			!					84 ${ }^{\prime \prime}$:	0.03\%:	70						

* Noriss Area shown is tributary to Bayonne sewer but may be inclucied in Jersey City systen. Capacity is reserved for this possible future contribution.

BAYONNE, 算. J.

Table showing Contribution to Intercepting Sewers
S. 2. INTYSROBPMTNG SEWER

* NOTE: Separate sanitary sewers comect into intercepting sewor in Fixst street area.

[^0]: 01ycto Potts.
 Febmuary 1046.

